gasbor
Manual
Introduction
GASBOR is program for ab initio reconstruction of protein structure by a chain-like ensemble of dummy residues.
Algorithm description
The use of GASBOR is similar to that of DAMMIN or DAMMIF. Most of parameters have the same meaning. The most important difference is that the protein structure is represented not by dummy spheres on lattice (called dummy atoms in DAMMIN / DAMMIF, but not corresponding to real atoms), but rather by an ensemble of dummy residues (corresponding to average residue densities) placed anywhere in continuous space with a preferred number of close distance neighbours for each atom. The centers of these residues aim to approximate positions of the C-lpha atoms in the protein structure. The number of residues should be equal to that in the protein. Note, however, that these residues are anonymous, in the sense that their ordinal numbers in the model has nothing to do with the numbering primary sequence of the protein! Accordingly, the program does not subtract any Porod constant from the experimental data. In DAMMIN, it was recommended to discard high angle portions of the scattering patterns; in GASBOR, on the contrary, one should use them. The program is able to fit the data up to the resolution of 5 angstroms, i.e. momentum transfer s = 4 \pi *sin( heta )/ \lambda = 1.2 Å ^-1^.
Running gasbor
Command-Line Arguments and Options
Usage:
$ gasbor [GNOMFILE] [Num_DRs] [OPTIONS]
where gasbor should be replaced by the full program name (e.g. gasborp ). GASBOR accepts the following command line arguments:
Argument | Description |
---|---|
GNOMFILE | A relative or absolute path to aGNOM outputfile. |
Num_DRs | Number of dummy residues in asymmetric part. |
GASBOR recognizes the following command-line options.
Option | Description | |
---|---|---|
–seed=<INT> | Set the seed for the random number generator | |
–mo<U | E> | Configuration mode, either User or Expert. |
–lo<LOG_FILE> | Prefix to prepend to output filenames. Default is the name of theGASBOR input filewithout extension. | |
–model-format=<FMT> | Format of 3D models, one of: cif, pdb (default: cif) | |
–id<DESCRIPTION> | Project description. By default, the command line content is used. | |
–un<UNIT> | Angular unit of the input file, either 1 [1/Angstrom] or 2 [1/nm]; undefined by default. | |
–sy<SYMMETRY> | Specify the point symmetry of the particle. Point groups P1, …, P19, P_n_2 (n = 2, …, 12), P23, P432 orPICO(icosahedral) are supported. By default, no symmetry is enforced (P1). | |
–an<ANISOMETRY> | Particle anisometry:oblate(O),prolate(P) or_unknown_(default). | |
–dr<DIRECTION> | Direction of anisometry, applicable with P2 symmetry only:along(L),across(C) or_unknown_(default). | |
–help | Print usage information and exit. | |
–version | Print version information and exit. |
Interactive Configuration
GASBOR reads in output files of GNOM. There are two versions of GASBOR, one performing the fit of the intensity in reciprocal space (GASBORI), and the other fitting the real space P(r) function (GASBORP). The algorithms of the two versions are similar. The reciprocal space version is slower but usually yields better fits to the experimental data. The real space version is much faster, and should be used when number of dummy residues makes runtime excessive (as runtime is proportional to square of number of dummy residues.) In addition, reciprocal space version is also available in implementation accounting for oligomeric equilibrium (GASBORMX). In this case, ab initio model of symmetric oligomer is built while assuming some fraction of monomers in solution (i.e. polydisperse sample). After starting GASBOR one may specify:
Prompt | Possible value(s) | Default value | Description |
---|---|---|---|
Computation mode | UserorExpert | User | After choosingExpertGASBOR will let you configure additionalexpert modeparameters. |
InUserandExpertmode | |||
Project identificator | lyz_or any other legal filename prefix_ | Filename for log (here:lyz.log) and other output files. | |
Enter project description | _any text:_lysozyme at 3 mg/ml | Description that will be put into log file. | |
Totalnumberof curves to fit | 1<integer<10 | 1 | The question is only asked by GASBORMX which may fit a concentration series of oligomeric equilibrium. |
Input data, GNOM output file name | _filename, like:_lyz.out | Input file with validGNOMoutput. If GASBOR doesn’t accept the file, then check thatGNOMrun has been finished and_P(r)_function written to the file. This question is asked for each curve, i.e. the number of times equals to thetotal number of curves to fitby GASBORMX. | |
Angular units in the input file | 1 | 1 | means that data unit isÅ^-1^ |
2 | means that data unit is nm^-1^. | ||
This question is asked for each curve, i.e. the number of times equals to thetotal number of curves to fitby GASBORMX. | |||
Portion of the curve to be fitted | 0.001-1.0 | 1.0for entire curve | Whether curve should be fitted in entirety, or just a part of it. This question is asked for each curve, i.e. the number of times equals to thetotal number of curves to fitby GASBORMX. |
Volume fraction of monomer (if known) | -1.0; (0.0, 1.0) | -1.0if unknown | If a positive number (below1.0) is given, such volume fraction of the monomer is kept fixed in the course of modelling. This question is only asked by GASBORMX. |
Initial DRM | _filename, like:_gasbor.pdb | none | Enter, if you want to start with a model from previous GASBOR run. Otherwise just press CR. |
Symmetry: P1…19 or Pn2 (n=1,..,12) or P23 or P432 or PICO | P1…P19orP12…P122orP23orP432orPICO | P2for GASBORMX, otherwiseP1 | Particle symmetry to be enforced. Number of residues given further refers to a single asymmetric unit (monomer). |
Number of residues in asymmetric part | integer>0 | none | Number of residues within a single asymmetric unit. |
Fibonacci grid order | 0…18 | order that gives number of waters close to the number of dummy residues | Order of the Fibonacci grid to generate dummy waters. |
Expected particle shape:<P>rolate,<O>blate, or<U>nknown | P,OorU | U | Constrains particle shape, if it is known to be significantly non-globular (non-spherical). Gives more accurate results in this case. |
InExpertmode only: | |||
Number of knots in the curve to fit | 11…201 | 42 | Regularized intensity is recomputed to have so many points for fitting. |
Radius of the search volume | positive real number | D~max~/2 | Radius of the volume in which dummy atoms will be placed. Limits the sampling space. |
Histogram penalty weight | positive real number | 1.000e-3 | Weight of the penalty when histogram of interresidue distances looks different from expected for a protein. |
Bond length penalty weight | positive real number | 1.000e-2 | Penalty for the bond lengths other than 3.8 Å. |
Discontiguity penalty weight | positive real number | 1.000e-2 | Penalty for disconnected dummy residues. |
Peripheral penalty weight | positive real number | 1.0 | Penalty term that ensures compact arrangement of DRs at the beginning. The weight is gradually reduced in the course of simulated annealing. |
Contrast of the hydration layer | positive real number | 3.000e-2 | Contrast of the hydration layer relative to the solvent |
Sequence file name | _any filename:_lysozyme.seq | none | Filename with protein sequence to compute the sequence specific dummy residue form factors. Besides otherlimitations, lines in this file must not exceed 256 characters. |
Weight: | 0 | 2 | Weight I(s) fit according to s^2^ |
1 | as above, with constant for s<MaxPor | ||
2 | as above, with average for s<MaxPor | ||
3 | weight I(s) proportionaly to s | ||
4 | as above, with constant for s<MaxI*s | ||
5 | as above, with average for s<MaxI*s | ||
6 | compute fit in logarithmic scale | ||
Account for constant background | YesorNo | Yes | Whether constant background should be subtracted when fitting. |
Initial scale factor | positive real number | depends on input | Initial scaling factor for fitting experimental data. |
Fixing threshold for Rf | 0.0 | obsolete | |
Fixing threshold for PenCha | 0.0 | obsolete | |
Fixing threshold for PenLen | 0.0 | obsolete | |
Initial annealing temperature | positive real number | 1.000e-3 | Initial temperature for annealing process defines probability of jumping into state of higher pseudo-energy (worse score) on each Monte-Carlo step. |
Annealing schedule factor | positive real number<1.0 | 0.9000 | Temperature will be multiplied by this factor after each round of simulated annealing to decrease it. |
# of independent atoms to modify | integer>0 | 1 | Number of atoms to reposition on each annealing step. |
Max # of iterations at each T | integer≥0 | depends on input | Each round of simulated annealing will terminate after at most so many iterations, and temperature will be decreased. |
Max # of successes at each T | integer>0 | depends on input | Each round of simulated annealing will terminate prematurely after so many successful iterations, and temperature will be decreased. |
Min # of successes to continue | integer>1 | depends on input | Program will terminate after a round of simulated annealing gives less than so many successes. |
Max # of annealing steps | integer>0 | 100 | Maximum number of annealing steps, after which program will always terminate. |
Runtime Output
After printing program version number and querying or printing all parameters, GASBOR will display a message that Simulated annealing procedure started and after each round of simulated annealing at new temperature, it will print a report line:
j: 1 T: 0.100E-02 Suc: 5500 Eva: 11544 CPU: 0.427E+02 SqF: 0.5172
Rf: 0.08396 His: 26.20 Bnd: 1.302 Dis:0.1593 Per :0.2196
Report header | Columns | Description |
---|---|---|
j: | 4-7 | Iteration number. |
T: | 11-20 | Temperature of iteration. |
Suc: | 27-31 | Number of successes at given iteration. |
Eva: | 38-45 | Total number of function evaluations until end of this iteration. |
CPU: | 52-61 | Total CPU time since beginning of run until end of this iteration. |
SqF: | 68-73 | square root of the target function at the end of iteration |
Rf: | 6-13 | R-factor penalty at the end of iteration |
His: | 19-24 | Histogram penalty at the end of iteration |
Bnd: | 30-35 | Bond angle penalty at the end of iteration |
Dis: | 41-45 | Discontiguity penalty at the end of iteration |
Per : | 53-58 | Peripheral penalty at the end of iteration |
After run is completed, final \chi ^2^ against data is printed to the output.
gasbor Input Files
The only input file is GNOM output containing both regularized scattering curve and P(r) (for real-space GASBOR.)
gasbor Output Files
After the program is finished, you will get the files:
Filename | Description |
---|---|
<name>.log | log file |
<name>.fit | fit to the desmeared and smoothed byGNOMdata (GASBORI) |
<name>-i.fit | fits to the desmeared and smoothed byGNOMdata (GASBORMX), where_i_runs from1to thetotal number of curves to fit. |
<name>.hst | fit to theGNOMdata in real space (GASBORP) |
<name>.fir | fit to the raw experimental data |
<name>-i.fir | fits to the raw experimental data (in GASBORMX), where_i_runs from1to thetotal number of curves to fit. |
<name>.cif | resulting model incif formatthat can be viewed e.g. withRasMolin thespacefillmode |
<name>.pdb | resulting model inPDB-like format(generated if–model-format=pdbcommand line option is used). It can be viewed e.g. withRasMolin thespacefillmode or withMASSHA. |
PDB/cif output
PDB-alike output file from GASBOR contains:
Atoms | Meaning |
---|---|
C-lphaatoms (codeCA) | positions of dummy residues |
Hatoms | positions of dummy bound waters |
Limitations
Problem | Limit | Details |
---|---|---|
Maximum number of dummy residues and waters | dummy atoms< 8000 | As the water shell may be reasonably represented with the ratio of number of residues/number of waters not exceeding 3, the program may currently handle proteins with a total number of residues not exceeding 6000 (i.e. total MM not exceeding ~700 kDa). |
Speed | O(dummy atoms^2^) | A GASBOR run on lysozyme (129 residues) on a PIV-2.2 GHz machine required less than an hour of CPU time using GASBORI and less than 20 min using GASBORP. The CPU time grows quadratically with the number of residues so that it may require long times on proteins with high molecular mass. |
For large proteins ( > 2000 aminoacids), DAMMIF / DAMMIN is recommended – it will run much faster and give similar results. The influence of the internal structure for large macromolecules is less important and the shape approximation would do a good job.
Examples
Lysozyme
Lysozyme has no symmetry, and 129 residues: Enter P1 symmetry, 129 residues and default answers to all other questions. You may also use command line (Type gasbori –help for batch mode use):
$ gasbori gnlyzfu.out 129
Here is resulting output:
*** Ab inito reconstruction of a protein structure ***
*** by a chain-like ensemble of dummy residues ***
*** Please reference: D.I.Svergun, M.V.Petoukhov & ***
*** M.H.J.Koch (2001) Biophys. J. 80, 2946-2953 ***
Type gasbori --help for batch mode use
=== GASBOR ATSAS 4.0.1 (6378ba7) started on 29-Sep-2023 12:48:23
Project identifier ..................................... : gnlyzfu
Project description:
Initialized random seed as ..................... : 661145759406964600
Data set title ......................................... : Angular axis n01000.sax Datafile n10000.sub
Maximum diameter of the particle ....................... : 50.00
Radius of gyration ..................................... : 14.33
Number of GNOM data points ............................. : 230
Maximum s value [1/angstrom] ........................... : 1.316
Number of Shannon channels ............................. : 20.94
Reduced s maximum ...................................... : 1.307
Reduced number of Shannon channels ..................... : 20.80
Number of knots in the curve to fit .................... : 42
Symmetry: P1...19 or Pn2 (n=1,..,12)
Number of equivalent positions ......................... : 1
Number of dummy waters ................................ : 90
Excluded volume per residue ............................ : 28.73
Radius of the search volume ............................ : 25.00
Histogram penalty weight ............................... : 1.000E-03
Bond length penalty weight ............................. : 1.000E-02
Discontiguity penalty weight ........................... : 1.000E-02
Peripheral penalty weight .............................. : 1.000
Contrast of the hydration layer ........................ : 3.000E-02
Computation of the initial intensity ...
Histogram penalty value ................................ : 40.11
Bond length penalty value .............................. : 2.402
Initial DRM # of graphs ................................ : 60
Discontiguity value .................................. : 1.099
Peripheral penalty value ............................... : 0.2496
Weight: 0-2 = s^2, 3-5 = s, 6 = log .................... : 2
*** Accounting for constant background ***
Initial scale factor ................................... : 1.092E-04
Constant background subtracted ......................... : -0.4002
Initial R^2 factor ..................................... : 0.1164
Initial R factor ..................................... : 0.3412
Initial penalty ........................................ : 0.3247
Initial fVal ........................................... : 0.4411
R-factor fixing threshold .............................. : 0.0
Fixing threshold PenCha ................................ : 0.0
Fixing threshold PenLen ................................ : 0.0
Initial annealing temperature .......................... : 1.000E-03
Annealing schedule factor .............................. : 0.9000
# of independent atoms to modify ....................... : 1
Max # of iterations at each T .......................... : 55000
Max # of successes at each T ........................... : 5500
Min # of successes to continue ......................... : 55
Max # of annealing steps ............................... : 100
==== Simulated annealing procedure started ====
j: 1 T: 0.100E-02 Suc: 5500 Eva: 11278 CPU: 0.106E+01 SqF: 0.5132
Rf: 0.09491 His: 25.78 Bnd: 1.398 Dis:0.1870 Per :0.2127
_..._
j: 36 T: 0.250E-04 Suc: 55 j: 36 T: 0.250E-04 Suc: 53 Eva: 1427584 CPU: 0.135E+03 SqF: 0.0912
Rf: 0.03409 His: 6.26 Bnd: 0.065 Dis:0.0000 Per :0.3664
Final Chi^2 against raw data ........................... : 1.248
=== GASBOR ATSAS 4.0.1 (6378ba7) finished on 29-Sep-2023 12:44:39
Transketolase
Transketolase is homodimer in solution, and each monomer has 680 residues, giving a total of 1360 residues: Enter P2 for symmetry, 680 for residues and default answers to all other questions.
*** Ab inito reconstruction of a protein structure ***
*** by a chain-like ensemble of dummy residues ***
*** Please reference: D.I.Svergun, M.V.Petoukhov & ***
*** M.H.J.Koch (2001) Biophys. J. 80, 2946-2953 ***
Type gasbori --help for batch mode use
=== GASBOR ATSAS 4.0.1 (6378ba7) started on 29-Sep-2023 12:56:50
Computation mode (User or Expert) ...... < User >:
Log file name .......................... < .log >: **log**
Input data, GNOM output file name ...... < .out >: **1trk.out**
Project identificator .................................. : log
Enter project description .............. : **project**
Random sequence initialized from ....................... : 164228
** Information read from the GNOM file **
Data set title: Transketolase collated from n85, o14+o16 6-11-98
Raw data file name: trkexp.dat
Maximum diameter of the particle ....................... : 12.00
Solution at Alpha = .164E+01 Rg : .336E+01 I(0) : .190E+03
Radius of gyration ..................................... : 3.360
Number of GNOM data points ............................. : 283
Angular units in the input file :
4*pi*sin(theta)/lambda [1/angstrom] (1)
4*pi*sin(theta)/lambda [1/nm ] (2) < 2 >: **2**
Angular units multiplied by ............................ : 0.1000
Maximum diameter divided by ............................ : 0.1000
Maximum s value [1/angstrom] ........................... : 0.3418
Number of Shannon channels ............................. : 13.06
Portion of the curve to be fitted ...... < 1.000 >:
Number of knots in the curve to fit .................... : 26
Initial DRM (CR for random) ............ < .pdb >:
Symmetry: P1...19 or Pn2 (n=1,..,12)
or P23 or P432 or PICO ................. < P1 >: **P2**
Number of equivalent positions ......................... : 2
Number of residues in asymmetric part .. < 517 >: **680**
Fibonacci grid order ................... < 15 >:
Number of dummy waters ................................ : 988
Excluded volume per residue ............................ : 28.73
Radius of the search volume ............................ : 60.00
Histogram penalty weight ............................... : 1.000e-3
Bond length penalty weight ............................. : 1.000e-2
Discontiguity penalty weight ........................... : 1.000e-2
Peripheral penalty weight .............................. : 1.000
Expected particle shape: <P>rolate, <O>blate,
or <U>nknown .......................... < Unknown >:
Contrast of the hydration layer ........................ : 3.000e-2
Computation of the initial intensity ...
Histogram penalty value ................................ : 37.38
Bond length penalty value .............................. : 1.604
Initial DRM # of graphs ................................ : 708
Discontiguity value .................................. : 2.191
Peripheral penalty value ............................... : 0.2647
Weight: 0-2 = s^2, 3-5 = s, 6 = log .................... : 2
*** Accounting for constant background ***
Initial scale factor ................................... : 5.042e-7
Constant background subtracted ......................... : 0.3339
Initial R^2 factor ..................................... : 3.837e-2
Initial R factor ..................................... : 0.1959
Initial penalty ........................................ : 0.3400
Initial fVal ........................................... : 0.3784
R-factor fixing threshold .............................. : 0.0
Fixing threshold PenCha ................................ : 0.0
Fixing threshold PenLen ................................ : 0.0
Initial annealing temperature .......................... : 1.000e-3
Annealing schedule factor .............................. : 0.9000
# of independent atoms to modify ....................... : 1
Max # of iterations at each T .......................... : 130000
Max # of successes at each T ........................... : 13000
Min # of successes to continue ......................... : 130
Max # of annealing steps ............................... : 100
==== Simulated annealing procedure started ====
j: 1 T: 0.100E-02 Suc: 13000 Eva: 14975 CPU: 0.272E+02 SqF: 0.5531
Rf: 0.11900 His: 36.59 Bnd: 2.213 Dis:0.3588 Per :0.2294
_..._
j: 56 T: 0.304E-05 Suc: 85 Eva: 3737295 CPU: 0.680E+04 SqF: 0.0797
Rf: 0.02350 His: 5.37 Bnd: 0.044 Dis:0.0000 Per :0.3197
Final Chi^2 against raw data ........................... : 1.774
=== GASBOR ATSAS 4.0.1 (6378ba7) finished on 29-Sep-2023 14:57:15
Lysozyme in Expert mode with sequence file
Lysozyme example with sequence-specific form-factors of dummy residues. Enter E for Expert mode, P1 symmetry, 129 residues, lyz.seq for the sequence and default answers to all other questions.
*** Ab inito reconstruction of a protein structure ***
*** by a chain-like ensemble of dummy residues ***
*** Please reference: D.I.Svergun, M.V.Petoukhov & ***
*** M.H.J.Koch (2001) Biophys. J. 80, 2946-2953 ***
Type gasbori --help for batch mode use
=== GASBOR ATSAS 4.0.1 (8aa369f3b) started on 02-Oct-2023 13:55:24
Computation mode (User or Expert) ...... < User >: **E**
Log file name .......................... < .log >: **lyzseq**
Input data, GNOM output file name ...... < .out >: **gnlyzfu**
Project identifier ..................................... : lyzseq
Enter project description .............. : **use sequence**
Initial random seed? (default: use current time) ..................... :
Warning: initialising the random seed when it has already been initialised
Previous seed: 39884949516326408
New seed: 39888779342845448
Initialized random seed as ..................... : 39888779342845448
Data set title ......................................... : Angular axis n01000.sax Datafile n10000.sub
Maximum diameter of the particle ....................... : 50.00
Radius of gyration ..................................... : 14.33
Number of GNOM data points ............................. : 230
Angular units in the input file :
4*pi*sin(theta)/lambda [1/angstrom] (1)
4*pi*sin(theta)/lambda [1/nm ] (2) < 1 >:
Maximum s value [1/angstrom] ........................... : 1.316
Number of Shannon channels ............................. : 20.94
Portion of the curve to be fitted ...... < 1.000 >:
Reduced s maximum ...................................... : 1.307
Reduced number of Shannon channels ..................... : 20.80
Number of knots in the curve to fit .... < 42 >:
Initial DRM (CR for random) ............ < .pdb >:
Symmetry: P1...19 or Pn2 (n=1,..,12)
or P23 or P432 or PICO ................. < P1 >: **P1**
Number of equivalent positions ......................... : 1
Number of residues in asymmetric part .. < 80 >: **129**
Fibonacci grid order ................... < 10 >:
Number of dummy waters ................................ : 90
Excluded volume per residue ............................ : 28.73
Radius of the search volume ............ < 25.00 >:
Histogram penalty weight ............... < 1.0000E-3 >:
Bond length penalty weight ............. < 1.0000E-2 >:
Discontiguity penalty weight ........... < 1.0000E-2 >:
Peripheral penalty weight .............. < 1.000 >:
Expected particle shape: <P>rolate, <O>blate,
or <U>nknown .......................... < Unknown >:
Contrast of the hydration layer ........ < 3.0000E-2 >:
Seqence file name, CR for none ......... < .seq >: **lyz**
Sequence file name ..................................... : lyz.seq
Computation of the initial intensity ...
Histogram penalty value ................................ : 27.84
Bond length penalty value .............................. : 1.772
Initial DRM # of graphs ................................ : 65
Discontiguity value .................................. : 2.152
Peripheral penalty value ............................... : 0.2892
Weight: 0=s^2,1=const at s<MaxPor,2=aver
Weight: 3=s ,4=const at s<MaxI*s,5=aver
Weight: 6=logarithmic scale ............ < 2 >:
Account for constant background [ Y / N ] < Yes >:
*** Accounting for constant background ***
Initial scale factor ................... < 9.9872E-5 >:
Constant background subtracted ......................... : -0.4946
Initial R^2 factor ..................................... : 0.1717
Initial R factor ..................................... : 0.4144
Initial penalty ........................................ : 0.3563
Initial fVal ........................................... : 0.5280
Fixing threshold for Rf ................ < 0.000 >:
Fixing threshold for PenCha ............ < 0.000 >:
Fixing threshold for PenLen ............ < 0.000 >:
Initial annealing temperature .......... < 1.0000E-3 >:
Annealing schedule factor .............. < 0.9000 >:
# of independent atoms to modify ....... < 1 >:
Max # of iterations at each T .......... < 55000 >:
Max # of successes at each T ........... < 5500 >:
Min # of successes to continue ......... < 55 >:
Max # of annealing steps ............... < 100 >:
==== Simulated annealing procedure started ====
j: 1 T: 0.100E-02 Suc: 5500 Eva: 10277 CPU: 0.969E+00 SqF: 0.5257
Rf: 0.11500 His: 29.47 Bnd: 1.951 Dis:0.0315 Per :0.2139
_..._
j: 37 T: 0.225E-04 Suc: 36 Eva: 1431936 CPU: 0.134E+03 SqF: 0.0943
Rf: 0.03583 His: 6.50 Bnd: 0.087 Dis:0.0000 Per :0.4718
Final Chi^2 against raw data ........................... : 1.335
=== GASBOR ATSAS 4.0.1 (8aa369f3b) finished on 02-Oct-2023 13:58:36
Gasbormx on concentration series of Tetanus toxin
There are three curves available on Tetanus toxin: one corresponds to pure monomer, the other two are from monomer-dimer equilibrium with unknown volume fractions. In this gasbormx example all three curves are fitted simultaneously, while keeping the volume fraction of the monomer fixed to 1 for the monoimer curve and varying monomer and dimer volume fractions for the other two. The overall P2 symmetry is used and 451 residues per monomer are generated.
*** Ab inito reconstruction of a protein structure ***
*** by a chain-like ensemble of dummy residues (mix) ***
*** Takes into account oligomer-monomer equilibrium ***
*** Please reference: D.I.Svergun, M.V.Petoukhov & ***
*** M.H.J.Koch (2001) Biophys. J. 80, 2946-2953 ***
Type gasbormx --help for batch mode use
=== GASBOR ATSAS 4.0.1 (6378ba7) started on 01-Oct-2023 16:22:34
Computation mode (User or Expert) ...... < User >:
Log file name .......................... < .log >: **tetomx1**
Project identifier ..................................... : tetomx1
Enter project description .............. : **3 curves**
Warning: initialising the random seed when it has already been initialised
Previous seed: 27016039586466748
New seed: 27020856437574588
Initialized random seed as ..................... : 27020856437574588
Total number of curves to fit .......... < 1 >: **3**
Number of knots on the master grid ..................... : 101
Curve # ................................................ : 1
Input data, GNOM output file name ...... < .out >: **hcm_mer**
Data set title
Maximum diameter of the particle ....................... : 10.05
Radius of gyration ..................................... : 2.938
Number of GNOM data points ............................. : 591
Angular units in the input file :
4*pi*sin(theta)/lambda [1/angstrom] (1)
4*pi*sin(theta)/lambda [1/nm ] (2) < 2 >:
Angular units multiplied by ............................ : 0.1000
Maximum diameter divided by ............................ : 0.1000
Maximum s value [1/angstrom] ........................... : 0.2691
Number of Shannon channels ............................. : 8.608
Portion of the curve to be fitted ...... < 1.000 >:
Reduced s maximum ...................................... : 0.2684
Reduced number of Shannon channels ..................... : 8.585
Volume fraction of monomer (if known) .. < -1.000 >: **1**
Curve # ................................................ : 2
Input data, GNOM output file name ...... < .out >: **hcp_a46c**
Data set title
Maximum diameter of the particle ....................... : 13.00
Radius of gyration ..................................... : 3.907
Number of GNOM data points ............................. : 941
Angular units in the input file :
4*pi*sin(theta)/lambda [1/angstrom] (1)
4*pi*sin(theta)/lambda [1/nm ] (2) < 2 >:
Angular units multiplied by ............................ : 0.1000
Maximum diameter divided by ............................ : 0.1000
Maximum s value [1/angstrom] ........................... : 0.3384
Number of Shannon channels ............................. : 14.00
Portion of the curve to be fitted ...... < 1.000 >:
Reduced s maximum ...................................... : 0.3381
Reduced number of Shannon channels ..................... : 13.99
Volume fraction of monomer (if known) .. < -1.000 >:
Curve # ................................................ : 3
Input data, GNOM output file name ...... < .out >: **hcp_a48c**
Data set title
Maximum diameter of the particle ....................... : 15.00
Radius of gyration ..................................... : 4.393
Number of GNOM data points ............................. : 944
Angular units in the input file :
4*pi*sin(theta)/lambda [1/angstrom] (1)
4*pi*sin(theta)/lambda [1/nm ] (2) < 2 >:
Angular units multiplied by ............................ : 0.1000
Maximum diameter divided by ............................ : 0.1000
Maximum s value [1/angstrom] ........................... : 0.3384
Number of Shannon channels ............................. : 16.16
Portion of the curve to be fitted ...... < 1.000 >:
Reduced s maximum ...................................... : 0.3381
Reduced number of Shannon channels ..................... : 16.14
Volume fraction of monomer (if known) .. < -1.000 >:
Initial DRM (CR for random) ............ < .pdb >:
Symmetry: P2...9 or Pn2 (n=2,..,9)
or P23 or P432 or PICO ................. < P2 >:**P2**
Number of equivalent positions ......................... : 2
Number of residues in asymmetric part .. < 1156 >: **451**
Fibonacci grid order ................... < 14 >:
Number of dummy waters ................................. : 611
Excluded volume per residue ............................ : 28.73
Radius of the search volume ............................ : 75.00
Histogram penalty weight ............................... : 1.000E-03
Bond length penalty weight ............................. : 1.000E-02
Discontiguity penalty weight ........................... : 1.000E-02
Peripheral penalty weight .............................. : 5.000E-02
Expected particle shape: <P>rolate, <O>blate,
or <U>nknown .......................... < Unknown >:
Contrast of the hydration layer ........................ : 3.000E-02
Computation of the initial intensity ...
Histogram penalty value ................................ : 32.79
Bond length penalty value .............................. : 0.6398
Initial DRM # of graphs ................................ : 731
Discontiguity value .................................. : 4.725
Peripheral penalty value ............................... : 0.2862
Weight: 0-2 = s^2, 3-5 = s, 6 = log .................... : 2
*** Accounting for constant background ***
Constant background subtracted ......................... : -8.012E-04
Initial R^2 factor ..................................... : 0.5078
Initial R factor ..................................... : 0.7126
Volume fraction, monomer ............................... : 1.000
Constant background subtracted ......................... : -0.1363
Initial R^2 factor ..................................... : 7.185
Initial R factor ..................................... : 2.681
Volume fraction, monomer ............................... : 1.000
Constant background subtracted ......................... : -0.5360
Initial R^2 factor ..................................... : 7.029
Initial R factor ..................................... : 2.651
Initial penalty ........................................ : 0.1007
Initial fVal ........................................... : 14.82
Initial annealing temperature .......................... : 0.100
Annealing schedule factor .............................. : 0.9000
# of independent atoms to modify ....................... : 1
Max # of iterations at each T .......................... : 105000
Max # of successes at each T ........................... : 10500
Min # of successes to continue ......................... : 105
Max # of annealing steps ............................... : 100
==== Simulated annealing procedure started ====
j: 1 T: 0.100E+00 Suc: 10500 Eva: 10921 CPU: 0.311E+02 SqF: 0.4654
Rf: 0.35014 His: 36.75 Bnd: 2.707 Dis:2.0684 Per :0.1894
_..._
j: 96 T: 0.450E-05 Suc: 98 Eva: 3542664 CPU: 0.764E+04 SqF: 0.0942
Rf: 0.05956 His: 4.96 Bnd: 0.038 Dis:0.0000 Per :0.1477
Final Chi^2 against raw data ........................... : 1.669
Final Chi^2 against raw data ........................... : 0.9622
Final Chi^2 against raw data ........................... : 1.172
=== GASBOR ATSAS 4.0.1 (6378ba7) started on 01-Oct-2023 18:32:46
References
- Svergun, D.I., Petoukhov, M.V.&Koch, M.H.J. (2001) Determination of domain structure of proteins from X-ray solution scattering.Biophys. J.80, 2946-2953.
- Petoukhov, M.V., Franke, D., Shkumatov, A.V., Tria, G., Kikhney, A.G., Gajda, M., Gorba, C., Mertens, H.D.T., Konarev, P.V. and Svergun, D.I. (2012)New developments in the ATSAS program package for small-angle scattering data analysis.J. Appl. Cryst.45, 342-350(c)International Union of CrystallographyDOI